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Abstract. We establish that on Cartan–Hadamard manifolds with strictly con-

vex boundary and pinched negative curvature, the set of Pollicott–Ruelle res-
onances associated with the geodesic flow coincides with the set of scattering

resonances defined via the scattering operator. Our proof relies on a generaliza-

tion of a result of the second-named author to the Cartan-Hadamard setting: we
show that all generalized resonant and co-resonant states of the flow have full

topological support on the incoming and outgoing tails, respectively. We further

use a microlocal transversality result, due to Y. Chaubet in dimension two and
to M. Cekic, C. Guillarmou, and T. Lefeuvre in general, which ensures that the

pullback of the meromorphically continued resolvent kernel to the boundary is

well-posed, and yields the scattering operator.

1. Introduction

1 The study of chaotic dynamics on negatively curved manifolds has long revealed
deep connections between geometry, analysis, and dynamical systems. In the compact
setting, geodesic flows on closed negatively curved manifolds are canonical examples
of Anosov flows, characterized by their uniform hyperbolicity and rich spectral struc-
ture. Central to their analysis is the notion of Pollicott–Ruelle resonances, complex
frequencies that encode the decay rates of dynamical correlations and govern the fine
statistical properties of the flow. These resonances form a discrete set in the complex
plane and have been extensively studied via microlocal methods.

In recent years, attention has turned toward understanding such dynamical spectra
in the non-compact setting, particularly for open systems where geodesics may escape
to infinity. In these contexts, one may still define Pollicott–Ruelle resonances, and this
was achieved in seminal work by Dyatlov and Guillarmou, who constructed a robust
microlocal theory for resonances in open hyperbolic systems. Concurrently, these
developments have been paralleled by advances in inverse problems and scattering
theory.

Scattering operators also admit meromorphic extensions in these settings. Intrigu-
ingly, their poles–scattering resonances–bear a close relationship to the dynamical
resonances mentioned above. In recent work by Chaubet and by Cekic, Guillarmou,
and Lefeuvre, it has been shown that for Anosov-type compact manifolds with strictly
convex boundaries and hyperbolic trapped sets, the Schwartz kernel of the scatter-
ing operator can be obtained by the pullback of the dynamical resolvent kernel to
the boundary. This identification allows for a precise comparison between the two
notions of resonance.

The current paper contributes to this confluence of ideas by establishing that Pol-
licott–Ruelle resonances and scattering resonances coincide. Specifically, we work on
Cartan–Hadamard manifolds of pinched negative curvature, modulo a discrete group
action, and consider a compact subregion of the unit tangent bundle with strictly

1Last updated on May 23, 2025.
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convex boundary. Under the assumption that the geodesic flow is hyperbolic on its
trapped set, we prove that the poles of the meromorphic continuation of the boundary
scattering operator match exactly with the Pollicott–Ruelle resonances of the flow.

Our approach is twofold: first, we generalize a result of the second-named author
to show that generalized resonant and co-resonant states have full support on the
incoming and outgoing tails, respectively. Second, using the aforementioend results
on the pullback of the dynamical resolvent kernel to the boundary, we relate the
scattering operator to the dynamical resolvent.

2. Notation and Main Results

Let (M̃, g̃) be a Cartan–Hadamard manifold: a complete, simply connected Rie-
mannian manifold of dimension n ≥ 2 with sectional curvature uniformly pinched
between two negative constants,

−b2 ≤ Secg̃ ≤ −a2 < 0,

and with bounded derivatives of the sectional curvature. Let Γ < Isom(M̃) be a
torsion-free discrete group acting freely and properly discontinuously, and define the
complete, non-compact manifold

M := Γ\M̃.

Let U ⊂ SM be a compact manifold with boundary, with interior U and boundary
∂U . Let X denote the geodesic vector field generating the flow φt := etX on SM . We
assume that the boundary ∂U is strictly convex in the sense that

x ∈ ∂U , Xρ(x) = 0 =⇒ X2ρ(x) < 0,

for some boundary defining function ρ ∈ C∞(U) satisfying ρ > 0 in U , ρ = 0 on ∂U ,
and dρ ̸= 0 on ∂U . As stated in [DG16], this definition is independent of the choice
of boundary defining function ρ.

We define the incoming and outgoing tails by

Γ± :=
⋂

±t≥0

φt(U), K := Γ+ ∩ Γ− ⊂ U ,

so that K consists of unit tangent vectors whose geodesics remain in U for all time.
We assume that the trapped set K is:

(1) hyperbolic, i.e., for all y ∈ K, the tangent space admits a continuous, flow-
invariant splitting

TySM = RX(y)⊕ E−(y)⊕ E+(y),

where there exist constants ν, C > 0 such that

∥dφt(y)v∥ ≤ Ce−ν|t|∥v∥, for all ± t ≥ 0, v ∈ E∓(y),

(2) compact,
(3) and a basic set for the flow, meaning it is locally maximal, and the flow is

topologically transitive on K.

Here, ∥ · ∥ denotes the Sasaki norm induced by g. Following Dyatlov–Guillarmou
[DG16], we perform all our analysis on a compact submanifold U ⊂ SM containing
K, with strictly convex boundary. In particular, their work shows that one can
construct anisotropic Sobolev spaces adapted to the stable and unstable foliations, on
which the operator

R(λ) := (X + λ)−1
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admits a meromorphic extension from Re(λ) ≫ 1 to C as a family of operators

R(λ) : C∞
c (U) → D′(U),

and the poles of this extension are called Pollicott–Ruelle resonances.
In this paper, we are concerned with two questions:

(1) What is the topological support of generalized resonant and co-resonant states
associated to a given resonance λ0 ∈ C?

(2) Does the set of Pollicott–Ruelle resonances coincide with the set of poles of
the so-called scattering operator?

Our first result addresses the first question, extending a result of the second-named
author for compact manifolds admitting an Anosov flow [Wei17] to the setting de-
scribed above:

Theorem 2.1 (Full Support of Generalized Resonant and Co-Resonant States). Let
λ0 ∈ C be a Pollicott–Ruelle resonance of the geodesic vector field X on U . Then:

• If u ∈ D′(U) satisfies (X+λ0)
ju = 0 for some j ≥ 1, and WF(u) ⊂ E∗

+, then

supp(u) = Γ+.

• If v ∈ D′(U) satisfies (X∗ + λ0)
jv = 0 for some j ≥ 1, and WF(v) ⊂ E∗

−,
then

supp(v) = Γ−.

To prove the first part of Theorem 2.1, we assume that a resonant state vanishes on
a subset of Γ+, and construct test distributions supported near the trapped set K,
exploiting its local product structure and the smooth disintegration of the Liouville
measure along strong stable leaves. Microlocal transversality of wavefront sets guaran-
tees that the pairing with the resonant state vanishes. Then, the wavefront condition
ensures that vanishing propagates forward along the flow. Since Γ+ = W s(K), and
the backward orbit of any point in Γ+ accumulates on K, this forces global vanishing,
contradicting nontriviality of the resonant state. The argument for the second part
is analogous, with time reversed and stable/unstable directions exchanged.

In order to state our next result, we need additional preliminaries. Let ∂±U ⊂ ∂U
denote the incoming and outgoing boundary components of U , defined as

∂±U := {(x, v) ∈ ∂U | ±Xρ(x, v) < 0} ,
where, as above, ρ is a boundary defining function for U . These sets correspond to unit
tangent vectors whose geodesics enter (−) or exit (+) the region U . The boundary
scattering map Sg associates to each (x, v) ∈ ∂−U the point where the geodesic first
exits U :

Sg(x, v) := φg
τg(x,v)

(x, v), where τg(x, v) is the first exit time.

This defines a scattering map, which is a diffeomorphism

Sg : ∂−U \ Γ− → ∂+U \ Γ+.

The associated scattering operator is defined by pullback under Sg:

Sg : C∞
c (∂+U \ Γ+) → C∞

c (∂−U \ Γ−),

(Sgf)(z) := f(Sg(z)).

Remark 2.2. The scattering map Sg determines, and is in turn determined by, the
corresponding scattering operator Sg; that is, the operator encodes the action of the
map on boundary data, and vice versa, and we refer to [CGL24, Section 2.2] for a
more thorough discussion on this topic.
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Furthermore, the Schwartz kernel of the scattering operator Sg(λ) can be obtained via
the Schwartz kernel of the meromorphic extension of the resolvent R(λ), as follows.
Let R(λ; z, z′) be the Schwartz kernel of R(λ), a distribution on U × U . Define the
Schwartz kernel of the boundary scattering operator as

Sg(λ)(y−, y+) := −(ι∂− × ι∂+)∗R(λ; y−, y+),

where ι∂± : ∂±U ↪→ U are the inclusion maps. By results of Chaubet in dimen-
sion 2 [Cha24, Proposition 3.2] and Cekic–Guillarmou–Lefeuvre in general [CGL24,
Lemma 2.7], this pullback is well-defined, and establishes the Schwartz kernel Sg(λ)
of the scattering operator as a distribution on ∂−U × ∂+U .

We are now ready to state our second result:

Theorem 2.3. Let (M, g) = Γ\M̃ be as above. Then the set of Pollicott–Ruelle
resonances of the geodesic vector field X on U coincides with the set of poles of the
meromorphic extension of the boundary scattering operator Sg(λ):

{Pollicott–Ruelle resonances of X} = {poles of Sg(λ)}.

This equivalence is proved by first showing, via Theorem 2.1, that the residues
of the resolvent have full support on Γ− × Γ+, and therefore restrict nontrivially to
∂−M × ∂+M , so every Pollicott–Ruelle resonance induces a pole of the scattering
operator. The converse inclusion follows from the fact that the scattering kernel is
defined as a pullback of the resolvent.

3. Proof of Theorem 2.1

Proof. Let λ0 ∈ C be a Pollicott–Ruelle resonance of the operator X acting on dis-
tributions supported in U , as defined via meromorphic continuation of the resolvent.
Let u ∈ D′(U) be a generalized resonant state associated to λ0. That is,

(X + λ0)
ju = 0

for some integer j ≥ 1, and

WF(u) ⊂ E∗
+, supp(u) ⊂ Γ+.

The goal is to show that:

supp(u) = Γ+.

We now explain the strategy, which follows closely in outline the argument in [Wei17].
There, the proof proceeds by:

(1) Assuming the resonant state u vanishes on an open subset of SM ,
(2) Constructing a distribution ρ ∈ D′(U), supported where u = 0, such that

WF(ρ) ⊂ E∗
−, and using the fact that WF(u) ⊂ E∗

+ with E∗
+ ∩ E∗

− = {0},
to conclude ⟨u, ρ⟩ = 0 by Hörmander’s criterion for the multiplication of
distributions,

(3) Using flow invariance of the wavefront set to propagate vanishing, along with
topological transitivity, to derive a contradiction.

In the open hyperbolic setting, we adapt each of these steps using the local hyper-
bolic structure near the trapped set and by leveraging the leafwise smooth disinte-
gration of the Liouville measure (available after lifting to the universal cover, thanks
to [PPS15, Theorem 7.6]).

Assume for the sake of contradiction that supp(u) ⊊ Γ+. Then there exists a point
x0 ∈ Γ+ \ supp(u) and a relatively compact open neighborhood W ′ ⊂ U of x0 such
that supp(u) ∩W ′ = ∅. Define W := W ′ ∩ Γ+, so u|W = 0.
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Because Γ+ = Wu(K) (see [Gui17, Lemma 2.2] and its proof), and because K is
hyperbolic, Γ+ is locally laminated near K by weak unstable manifolds Wwu(x). In
a neighborhood NK ⊂ U , one may construct local product coordinates V ⊂ NK of
the form V ∼= V ss × V u, where:

(1) V ss ⊂ W ss(x) is a small neighborhood in the strong stable manifold of x,
(2) V u is a transversal in the unstable direction.

Let A ⊂ V u be open. Following the notation set in [Wei17], we define the stable
tube SA over A is the set

SA :=
⋃
z∈A

W ss(z) = {(y, z) ∈ V ss ×A}.

Remark 3.1. In other terms, a stable tube is a bundle of strong stable manifolds
over a coordinate patch in the unstable direction.

We fix a point x1 ∈ W ∩NK , and a chart V ∼= V ss ×V u ⊂ NK ∩W ′ as above. Let
A ⊂ V u be a relatively compact open set. Then SA ⊂ W , and hence u|SA

= 0.
To exploit this vanishing microlocally, we define a test distribution ρA ∈ D′(U) sup-

ported on SA, built via a leafwise disintegration of the volume measure. To construct
smooth test distributions supported along stable tubes, we use the disintegration of
the Liouville measure along stable leaves in the universal cover. The following clas-
sical result, which follows from [PPS15, Theorem 7.6] in our setting, provides the
required regularity:

Theorem 3.2. Let M̃ be the universal cover of M , and let SM̃ denote its unit tangent

bundle. Then the Liouville measure µ̃ on SM̃ admits a disintegration along the strong
stable foliation. That is, in any sufficiently small local product neighborhood of the

form V ss × V u ⊂ SM̃ , we can write

dµ̃ = ρ(y, z) d volW ss(z)(y) dz,

where W ss(z) is the strong stable manifold through z ∈ V u, and ρ(y, z) is a conditional
density which is smooth in the stable variable y, continuous in the transverse variable
z, and locally uniformly bounded.

This smooth disintegration is equivariant under the action of π1(M), and hence
descends to local product neighborhoods in SM . In particular, given a local product
chart V ∼= V ss × V u ⊂ SM near a point in the trapped set K, we may define a dis-
tribution ρA ∈ D′(SM) supported on the associated stable tube SA :=

⋃
z∈A W ss(z)

(for a relatively compact open subset A ⊂ V u) by

⟨ρA, f⟩ :=
∫
z∈A

(∫
y∈V ss

f(y, z)χ(y) ρ(y, z) dy

)
dz,

for all f ∈ C∞
c (V), where χ ∈ C∞

c (V ss) is a fixed smooth bump function normalized
so that

∫
χ = 1.

This integral defines ρA as a compactly supported distribution in D′(SM). The
key feature is that ρA is smooth along the strong stable direction. This ensures, via a
standard integration-by-parts argument (cf. [Wei17, Proposition 6 and Theorem 7]),
that the wavefront set of ρA is contained in the conormal bundle to the stable foliation:

WF(ρA) ⊂ E∗
−.

To conclude the argument, we analyze the implications of the vanishing of u on
the stable tube SA ⊂ Γ+. Since ρA ∈ D′(U) is supported in SA, and u|SA

= 0, we
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have supp(u) ∩ supp(ρA) = ∅. Furthermore, as shown above, we have

WF(ρA) ⊂ E∗
−, WF(u) ⊂ E∗

+, and E∗
+ ∩ E∗

− = {0}.
Hence, by Hörmander’s criterion, it follows that the pairing ⟨u, ρA⟩ is well-defined.
Since supp(u) ∩ supp(ρA) = ∅, this pairing must vanish:

⟨u, ρA⟩ = 0.

We now propagate the vanishing of u across Γ+. Let x ∈ Γ+ be arbitrary. By
definition, Γ+ is forward-invariant under the flow, and its points have backward tra-
jectories that remain in U . Since K := Γ+ ∩ Γ− is compact and Γ+ = Wu(K), the
backward orbit {φ−t(x)}t≥0 accumulates on the trapped set K. In particular, there
exists t0 ≥ 0 such that

x0 := φ−t0(x) ∈ NK ∩ Γ+,

where NK ⊂ U is the product neighborhood in which we constructed the stable tube
SA, and where u vanishes identically.

Since u is a generalized resonant state, the wavefront set WF(u) is invariant under
the canonical lift Φt on T ∗SM . In other terms, we have the identity

WF(u) = Φt(WF(u)) for all t ∈ R,
where Φt is the symplectic lift of φt (recall that this flow invariance of the wavefront
set is a direct consequence of the distributional invariance under pullback).

Since u vanishes in a neighborhood of x0 = φ−t0(x), there exists a covector ξ0 ∈
E∗

+(x0) and a conic neighborhood V0 ⊂ T ∗SM of (x0, ξ0) such that

V0 ∩WF(u) = ∅.
Because WF(u) is invariant under the lifted flow Φt and WF(u) ⊂ E∗

+ (which is
backward-invariant), it follows that

(x, ξ) := Φt0(x0, ξ0) /∈ WF(u),

for some ξ ∈ E∗
+(x).

Thus, ...
As x ∈ Γ+ was arbitrary, it follows that u vanishes identically on all of Γ+. This

contradicts the assumption that u is a nontrivial generalized resonant state with
support properly contained in Γ+. We conclude that

supp(u) = Γ+,

which completes the proof of the first part of the theorem.
The argument for co-resonant states v ∈ D′(U), satisfying (X∗ + λ̄0)

jv = 0,
WF(v) ⊂ E∗

−, proceeds identically upon reversing time and swapping stable and
unstable directions, and yields:

supp(v) = Γ−.

This concludes the proof. □

4. Proof of Theorem 2.3

Proof. Let R(λ) := (X + λ)−1 denote the meromorphic continuation of the resolvent
of the geodesic vector field X on U ⊂ SM . Fix a Pollicott–Ruelle resonance λ0 ∈ C.
Then R(λ) admits a Laurent expansion near λ = λ0 of the form

R(λ; z, z′) =

J∑
k=1

Ak(z, z
′)

(λ− λ0)k
+Rhol(λ; z, z

′),
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as shown in [DG16, Theorem 1] (see also the beginning of the proof of [DG16,
Lemma 4.5]), where each Ak ∈ D′(U ×U) is a finite-rank distribution, and Rhol(λ) is
holomorphic near λ0.

Let Rλ0
and R∗

λ0
denote the finite-dimensional spaces of generalized resonant and

co-resonant states at λ0:

Rλ0
:= {u ∈ D′(U) | (X + λ0)

mu = 0 for some m ≥ 1} ,

R∗
λ0

:=
{
v ∈ D′(U)

∣∣ (X∗ + λ0)
mv = 0 for some m ≥ 1

}
.

Let {ui}Ni=1 and {vj}Nj=1 be dual bases of Rλ0 and R∗
λ0
, normalized so that

⟨vj , ui⟩ = δij .

Then each Ak can be written in the form

Ak(z, z
′) =

N∑
i,j=1

α
(k)
ij ui(z)⊗ vj(z

′),

where α
(k)
ij ∈ C, and N = dimRλ0

denotes the dimension of the generalized resonant

space associated to the resonance λ0. By the results in [DG16], each ui and vj satisfy

WF(ui) ⊂ E∗
+, supp(ui) ⊂ Γ+, WF(vj) ⊂ E∗

−, supp(vj) ⊂ Γ−.

Therefore, the kernel Ak satisfies

WF(Ak) ⊂ E∗
+ × E∗

−, supp(Ak) ⊂ Γ− × Γ+.

Remark 4.1. The basis elements ui and vj used to express the Laurent coefficients Ak

as sums of rank-one distributions correspond to generalized resonant and co-resonant
states at the resonance λ0. This representation parallels the spectral projectors Πk

in [DG16, Theorem 1], which appear in the Laurent expansion of the meromorphic
continuation of the resolvent and act as finite-rank operators onto generalized resonant
spaces. Each Πk has a Schwartz kernel of the form

Πk(z, z
′) =

N∑
i=1

u
(k)
i (z)⊗ v

(k)
i (z′),

where the u
(k)
i are generalized resonant states and the v

(k)
i are dual co-resonant states

satisfying (X∗ + λ0)
mv

(k)
i = 0. In our setting, the Ak play the role of these kernels,

and our expression

Ak(z, z
′) =

N∑
i,j=1

α
(k)
ij ui(z)⊗ vj(z

′)

makes this structure explicit in terms of dual bases of the resonant and co-resonant
spaces. The dual pairing ⟨vj , ui⟩ = δij reflects the action of these projection operators
on test distributions.

Now consider the scattering operator

Sg(λ)(y−, y+) := −(ι∂− × ι∂+)∗R(λ; y−, y+),

defined by the pullback of the resolvent kernel to the incoming and outgoing boundary
components of U , where ι∂± : ∂±U ↪→ U are the canonical inclusion maps. The
pullback is well-defined as a distribution by the transversality of WF(R(λ)) ⊂ E∗

+×E∗
−

to the conormal bundle of ∂−U×∂+U , as proven in [Cha24, Corollary 6] in dimension
2 and [CGL24, Lemma 2.7] in general.
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Define
Sk := −(ι∂− × ι∂+)∗Ak ∈ D′(∂−U × ∂+U).

To prove that Sg(λ) has a pole at λ0, we must show that at least one Sk is nonzero. By
Theorem 2.1, each ui and vj have full support on Γ+ and Γ−, respectively. Since Γ±
consist of unit tangent vectors whose geodesics remain in U for all positive or negative
time, respectively, and U is a compact neighborhood of the trapped set with strictly
convex boundary, it follows that for every neighborhood V ⊂ U that is arbitrarily
close to ∂±U , we have

Γ± ∩ V ̸= ∅.
Therefore, it follows that the distributions ui and vj have nonvanishing topological
support arbitrarily close to the boundary. Therefore, Sg(λ) has a pole at λ0, i.e. it
has a pole at λ0 of order at most J , with Laurent expansion

Sg(λ) =

J′∑
k=1

Sk

(λ− λ0)k
+ holomorphic, 1 ≤ J ′ ≤ J,

where at least one Sk is nonzero. This establishes the inclusion

{Pollicott–Ruelle resonances of X} ⊂ {poles of Sg(λ)} .
Conversely, suppose λ0 is a pole of Sg(λ). Since Sg(λ) is defined as a pullback of
the meromorphic resolvent R(λ), it follows that R(λ) must also have a pole at λ0.
Therefore,

{poles of Sg(λ)} ⊂ {Pollicott–Ruelle resonances of X} .
Combining both directions, we conclude:

{Pollicott–Ruelle resonances of X} = {poles of Sg(λ)} .
□
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