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ABSTRACT. We introduce a new method, based on renormalization and microlo-
cal analysis, that recovers a number celebrated results in Teichmiiller theory: a
quantitative form of Masur’s criterion [Mas82], first proved by [For02]. Our
work extends the known results to include observables of anisotropic regularity.
Work in progress, parts of which is incomplete in this version of the paper, treats
two other problems: (1) a new proof of a result on the deviation of ergodic av-
erages, first proved by Forni [For02] for strata, and for all g:-invariant ergodic
probability measures by Bufetov [Buf14], and (2) we establish a priori bounds for
smooth extensions of solutions of the cohomological equation for generic trans-
lations flows with respect to any g:-invariant ergodic probability measures, with
the aim to control the anisotropic Sobolev norms of the solutions dynamically
(i-e., via renormalization).

1. INTRODUCTION

'"The moduli space of translation surfaces H, provides a natural framework for the
renormalization of generic translation flows on Riemann surfaces. Each point in H,,
corresponds to a Riemann surface equipped with a holomorphic 1-form—also known
as an abelian differential—which defines a flat metric with conical singularities.
Away from the cone points, the structure allows one to define directional (or linear)
flows on the surface, referred to as translation flows.

The Teichmiiller geodesic flow is a dynamical system on H,, but it also has a
concrete geometric interpretation: it deforms a (degenerate) flat metric on a genus
g > 2 Riemann surface via a quasiconformal map that stretches in the horizontal
direction and contracts in the vertical direction. This deformation has a dynamical
consequence—it effectively accelerates the horizontal trajectories of the translation
flow, making long orbit segments appear shorter in the renormalized geometry.

Viewed from this perspective, the Teichmiiller flow functions as a renormalizing
dynamical system: instead of analyzing long trajectories of a translation flow on a
fixed surface, one studies uniformly bounded-length segments of the flow on a family
of surfaces evolving under the Teichmiiller flow. In this way, the long-term behavior
of a translation flow is encoded in the evolution of a single orbit in H,.

A key insight, due to Masur [Mas82], is that if the Teichmiiller flow orbit of a
translation surface returns infinitely often to a compact subset of H,, then the cor-
responding horizontal translation flow is uniquely ergodic. This criterion illustrates
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a deep connection between recurrence in moduli space and statistical properties of
translation flows on surfaces.

This viewpoint transforms the study of statistical properties of generic transla-
tion flows—such as unique ergodicity, weak mixing, or deviations of ergodic aver-
ages—into questions about the dynamics of the Teichmiiller flow and the geometry
of the moduli space, equipped with the Teichmiiller metric. In this context, a prop-
erty is said to hold generically if it holds for almost every translation surface with
respect to a g;-invariant, ergodic probability measure whose support lies in H.

Our work uses tools from microlocal analysis to revisit several classical results
in Teichmiiller dynamics: the microlocal analytic frameworks allows us to define
anisotropic Sobolev norm that are adapted to the flat structure, and renormaliza-
tion allows us to control the boundedness of such norms dynamically. We empha-
size that our approach is general and applies to a broad class of renormalization
problems—including those outside of Teichmiiller theory—that concern “generic”
dynamical systems which are not fixed or periodic points of the renormalization
dynamics.

2. RESULTS

The purpose of this paper is introduce a new method, based on renormalization
and microlocal analysis, that controls the deviation of ergodic averages for generic
translation flows on translation surfaces, and to solve the cohomological equation
for generic translation flows with respect to any g¢;-invariant ergodic probability
measure, where g; denotes the Teichmiiller geodesic flow.

The paper is divided into four parts.

The first part of the paper introduces and develops a renormalization cocycle
over the moduli space of Abelian differentials H,. An isotropic form of this co-
cycle was first introduced in the work of Forni [For02], in his celebrated work
on the deviation of ergodic averages, later extended by Bufetov [Bufl4] to cover
all gi-invariant ergodic probability measures. Our paper introduces an anisotropic
form of this renormalization cocycle (which we call the Forni cocycle, following R.
Krikorian [Kri03] and W. Veech [Vee08]), establishes its quasi-compactness, and
proves the simplicity of its top Lyapunov exponent. These results were inspired
by the works of Forni [For02], Faure-Roy-Sjostrand [FRS08] and Faure-Gouézel-
Lanneau [FGL19]. More elaborately, the first part accomplishes the following steps:

(1) Constructs an anisotropic Sobolev bundle over moduli space.

(2) Proves quasi-compactness of the Forni cocycle

(3) Applies the oco-dimensional multiplicative ergodic theorem to decompose the
anisotropic Sobolev bundle over moduli space into finitely many g;-invariant
Oseledets subbundles, modulo a contracting subbundle that corresponds to
the “essential” spectrum of the cocycle.

(4) Proves simplicity of the 0 Lyapunov exponent via propagation of singulari-
ties.

(5) Rules out the existence of Lyapunov exponents that exceed 0.
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Using this setup, we address the first application of these methods, which is a
quantitative form of Masur’s criterion [Mas82], first proved by [For02] for smooth
observables. Extending the latter result to anisotropic observables, our first result
is therefore:

Theorem 2.1. Assume that the forward Teichmiiller orbit gg+(M,w) visits a com-
pact set K C H, with positive frequency, that is,

[k = lgLnJrinf Leb({t > 0]|g:(M,w) € K}) > 0.

Then there exist constants C(M,w) > 0 and o > 0 such that, for h,v sufficiently
large, for all distributions f € W~V (M) of zero average and for all (p,T) € M xRT,
such that p has an infinite forward orbit under qb‘fRf, we have

I _
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Moreover, by the Poincare recurrence theorem, we can derive

Corollary 2.2. Let v be any gi-invariant, ergodic probability measure on H,. Then
for v-almost every translation surface (M,w) € H,., there exist constants C(M,w) >
0 and a > 0 such that, for all h,v sufficiently large, all distributions f € W=""(M)
of zero average, and all (p,T) € M x RT such that p has an infinite forward orbit
under (bf{f, we have:
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Informally, the space W~%"(M), which is defined using the theory of variable-
order pseudodifferential operators, consists of distributions that are of Sobolev reg-
ularity h along the horizontal direction, and of Sobolev regularity —v along the
vertical direction. Moreover, the regularity varies smoothly across phase space, in-
terpolating between the horizontal and vertical directions via a smooth order func-
tion.

In order to prove this result, we first establish an anisotropic Sobolev restriction
theorem for rectangles in Appendix B, and use it to prove an anisotropic version of
a Sobolev trace theorem 7 that was first established in an isotropic form by Forni.

Work in progress, parts of which is incomplete in this version of the paper, uses
the same framework discussed above to address deviation of ergodic averages (re-
covering the known results) and establishing smooth extensions of solutions of the
cohomological equations for measure generic translation flows (going past what is
known). For this purpose, an anisotropic Sobolev extention theorem is established
in the appendix.

Structure of the paper. In Section 3, we review foundational background on
translation surfaces, the moduli space H,, the Teichmiiller flow, and the associated
horizontal and vertical vector fields. We also define smooth functions on translation
surfaces and recall the the notion of variable-order pseudo-differential operators in
our context. In Section 4, we construct the anisotropic Sobolev bundle, and define
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the anisotropic Forni cocycle and establish its boundedness and quasi-compactness
on the constructed bundles. Section 5 applies the infinite-dimensional multiplicative
ergodic theorem (MET) to obtain a measurable Oseledets splitting of the anisotropic
bundle. Section 6 is devoted to proving the simplicity of the top Lyapunov exponent.
In Section 7, we prove an anisotropic Sobolev trace theorem. Section 8 presents
the first main application of the theory: a quantitative form of unique ergodicity
for translation flows. In Appendix A, we prove a standard lemma of the order
function used to construct our anisotropic Sobolev bundle. Finally, in Appendix B,
we establish Sobolev restriction and extension theorems tailored to our anisotropic
setting.

3. PRELIMINARIES.

3.1. Translation surfaces. Let M be a Riemann surface of genus g > 2, and w a
holomorphic 1-form on S. The pair (M,w) is called a translation surface, since w
induces a translation atlas whose coordinate changes are translations on C = R2. In
other terms, w gives a flat metric with finitely many conical singularities and trivial
holonomy on S, and the zero set of w characterizes the singularity set of the conical
metric. The area of a translation surface is given by [ gw Aw. We will refer to the
pair (S,w) as just w.

3.2. Moduli Space. Let TH, be the Teichmiiller space of unit-area translation
surfaces of genus g > 2, and let H, = TH,/Mod, be the corresponding moduli
space, where Mod, denotes the mapping class group. The space H, is partitioned
into strata H,, which consist of all unit-area translation surfaces whose conical
singularities have total angles 2w (1 + k1), ...,27(1 + Kks), as K = (K1, ..., Ks) varies
over multi-indices with Y k; = 2¢g — 2.

Local period coordinates on each stratum are defined by the map which takes
every holomorphic 1-form w to its cohomology class [w] in H'(S,3,,C), relative
to the set X, of its zeros. The set of all period coordinate maps defines an affine
structure on each stratum, since all changes of coordinates are given by affine maps.

3.3. The SL(2,R) Action. The group SL(2,R) acts naturally on the space of trans-
lation surfaces by post-composing with charts, preserving both the flat structure and
the area form the area form dA,, = —% w A @. This action descends to the moduli
space and Teichmiiller space of translation surfaces, and it preserves each stratum

Hy. In this paper, we will primarily focus on the diagonal subgroup

et 0
gt ‘= <0 €7t ) tER7

which generates the Teichmiiller geodesic flow. Throughout, we will consider a g;-
invariant ergodic probability measure v whose support lies in a stratum H,.

We remark that the class of g;-invariant measures is strictly larger than the class
of SL(2,R)-invariant measures. For example, every closed orbit of the Teichmiiller
flow, corresponding to a linear pseudo-Anosov map, supports a gi-invariant ergodic
probability measure that is not SL(2, R)-invariant.
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3.4. Horizontal and vertical vector fields. We define the horizontal and vertical
vector fields X and Y via contraction with the real and imaginary parts of the
holomorphic 1-form w:
txRe(w) = —iyIm(w) =1, and (xIm(w) = tyRe(w) =0.

In canonical coordinates z = x +1iy, centered at a regular point (i.e., where w = dz),
the area form becomes dA,, = dx A dy, and the vector fields take the familiar form:
0 0
—, Y = —.
oz dy

Near a cone point of angle 27(k + 1), with local coordinate z such that w = 2*dz,
the vector fields become:

0 0 0 0
X = 2|7 <Re(zk)8x - Im(zk)8y> , Y =z <Im(2k)8x + Re(zk)8y> .
To resolve the singularity at the cone points, we use the branched covering map:
k+1
z
™=

which defines a (k + 1)-fold branched cover m : U(p) — D C C around each
singularity p € X, satisfying 7} (dz) = w and:

9 _9

Oox’ Oy’

3.5. Trivialization of the Tangent and Cotangent Bundles. The tangent bun-
dle TM and the cotangent bundle T*M can be globally trivialized over M \ X, since
both admit nowhere vanishing global frames. Specifically, the canonical horizontal
and vertical vector fields X, and Y,—defined respectively on the horizontal and ver-

tical foliations ker(Imw) and ker(Rew)—form an orthonormal basis of the tangent
space at every nonsingular point:

T (M) =span{X,,,Y,}, forallme M\X.

(k) X = (7)Y

Dually, the real and imaginary parts of the Abelian differential w form an orthonor-
mal basis of the cotangent space:

T, (M) = span{Rew,Imw} = span{ X, Y},

w w
where we set
X, = Reuw, Y =Imw.

w
In particular, we have the decompositions
T(M\X)=RX,®RY, =M\ x R? (3.1)
T*(M\ X)) =RX!®RY = M\ ¥ x R% (3.2)

The action of the Teichmiiller flow {g:} C SL(2,R) preserves this structure. In-
deed, it acts linearly on the basis {Rew,Imw} via

grw =e'Rew +ie Tmw,
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from which we obtain:

thw = thUJ = e_tXw') Ygtw = gtYw = etYwa
Koo = 9 X5 = ' X, You=tY = e Y.

Thus, the decompositions (3.1) and (3.2) are preserved under the Teichmiiller
flow, with the g;-action scaling the basis vectors accordingly.

3.6. Smooth functions on translation surfaces. Let ¥ C M be the set of cone
points of the translation surface (M,w). For each p € ¥ with cone angle 27 (k + 1),
fix a neighborhood U(p) C M and a local branched covering chart

wk+1

Tkt 1

where D C C is a disk centered at the origin. This map resolves the singularity at
p: w = 1} (dw). Following [For02], we define the space C°(M) of tempered smooth
functions adapted to the translation structure as follows:

Definition 3.1. A function f : M — R belongs to C°(M) if, for every chart
(U,my) in a translation atlas & on M we have

flo € (my)*C*(mu (U)).
Next, we turn to smooth functions defined on the cotangent bundle. The map 7
lifts naturally to a map on the cotangent bundle,
T T"D — T*U(p),
defined in coordinates as follows: write w = u + v and let (n,,7,) be the fiber
(covector) coordinates on T*D, and (&, &,) the fiber coordinates on T*U(p). Then

(x,y) = ﬂ-k(u/u)? (gﬂcagy) = (dﬂ'k)*(nu;nv)v

where (dmy)* is the transpose of the Jacobian matrix dmy, of the base map. This map
pulls back covectors from T*U (p) to T D, ensuring that cotangent vectors transform
appropriately under change of coordinates. We can now similarly define the space
C>®(T*M) of tempered smooth functions on the cotangent bundle, adapted to the
translation structure, as follows:

Definition 3.2. A function a : T*M — R belongs to C° (T M) if, for every chart
(U,my) in a translation atlas & on M, the restriction satisfies

a|T*U S ﬁf]COO(T*TrU(U)),

where 7y is the canonical lift of 7y to the cotangent bundle.

7 D —=U(p), mr(w)

3.7. Variable-Order Pseudo-Differential Operators. We now introduce variable-
order pseudo-differential operators. Our treatment follows the approach of [FRS08,
Appendix A], adapted to the local structure induced by the translation atlas. Thus,
let us fix a translation atlas {Uj, ¢; }ier of the translation surface M such that every
U; C M contains at most one singular point. Denote by V; =: ¢;(U;) C R? and by
V an open, bounded, connected subset of R2. For & € R?, define (£) := /1 + [£]2,
where |¢] is the Euclidean norm of ¢ in R2. We recall the definition of order function.
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Definition 3.3. A smooth function m € C®(V x R?) is an order function, i.e.,
m e S°(T*V), if
(1) for every compact set K C V, for every multi-indeces a, 3 € N? and any
(z,§) e T*V =V x R?
0800 m(x,€)| < Crap(8) ™),
for some uniform constants Cr o g > 0;
(2) supgege [m(w,§)| is uniformly bounded in V.

A smooth function m € C*(T*M) is an order function, i.e., m € SO(T*M), if
m(di(z), pis(€)) € SO(T*V;), for every i € I.

Definition 3.4. Let p € (3,1]. A smooth function a € C*(T*V) is a symbol of
variable order m € S°(T*V), ie., a € Sy, §)(T*V), if for every compact set
K C V, for every multi-indeces o, 8 € N? and any (x,£) € T*V =V x R?

1080 a(x,€)| < Ce (€)@ —Plal+(1=p)I5]

for some constants C'k o g > 0.
A smooth function a € C®(T*M) is an symbol of variable order m € S°(T*M),
Le., a€ Sz, )(T*M), if a(¢i(z), ¢ix(§)) € S (z,6)(T*V;), for every i € I.

Remark 3.5. Notice that the order function m in Definition 3.3 is nothing but a
symbol of constant order 0 and parameter p = 1.

We can now introduce the pseudodifferential operators with variable order.

Definition 3.6. A is a PDO of variable order m on C*°(V) if it has the following
form

w(x) = 1 @ Eq(x. Eu
Aule) = oz [ [ ala utuacay (31)

where a(x,§) is a symbol of variable order m(z,&). A is referred to as the left
quantization of the symbol a. Alternatively, one writes A = Op(a(z,§)).

Remark 3.7. The definition of PDOs for smooth manifolds depends on the choice
of coordinate charts. On the other hand, there is a well-defined notion of principal
symbol which is independent of the choice of charts. We refer the reader to [FRS08,
Section A.1.3] for a detailed discussion of the topic.

In (3.1), dy locally represents the area form fw A @ = Rew A Imw, that is the
Lebesgue measure associated with a basis of T}, M. Similarly, d§ := d§, Ad§, denotes
the (local) area form on T*M. In fact, it is given by the symplectic area element
02 /2 associated to the canonical symplectic 2-form:

o :=da = Rew A d&; + Imw A d&,,

where
a = & Rew + §Imw,

and we refer to [Zwo22, Page 342] for more details.
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4. THE ForNI COCYCLE

In [For02], Forni introduced the following construction: for any w € TH(k),
let C~°°(M,w) denote the space of tempered distributions on M, and define the
following trivial product bundle

TC* (M) = {(w, D)|D € C;%(M,w)}

over TH(x). Forni extends the SL(2,R)-action by parallel transport via the trivial
connection on this bundle as follows: for A € SL(2,R), we have

A(w,D) = (A-w,D)

To pass to the quotient, let us note that the diagonal action of Diff" (M) on
TC;>°(M) s as follows: for any orientation-preserving diffeomorphism ¢ € Difft(S),
we have

¢(w, D) = (¢*(w), ¢«(D)),

so that ¢ acts on w by pullback and on D by pushforward. Then observes that the
SL(2, R)-action commutes with the Diff " (M)-action, which further implies that the
SL(2,R)-action is well-defined on the quotient bundle

C.®°(M) = TC_,*>°(M)/Diff " (M).

K

The Forni cocycle is defined to be the lift of the {g;}-action to the bundle C*>°(M),
by parallel transport with respect to the trivial connection.

Remark 4.1. In [For02], Forni referred to this cocycle as the renormalization
cocycle, or transfer cocycle. Subsequently, R. Krikorian [Kri03] and W. Veech
[Vee08] have both named this cocycle after Forni, and we continue to adopt their
terminology in this paper.

The following lemma introduces the order function m and the subsequent symbol
am. We anticipate that the a,,, also called escape function, satisfies an additional
property: it is decreasing along the orbits of the geodesic flow. This feature is crucial
in proving that the Forni cocycle (4.1) is quasicompact (see Theorem 4.6).

Lemma 4.2. Let v € RT and h € RT. There exists an order function m,, € Sy C
C(T*M), with values in the interval [—h,v|, that fulfills the following properties.
For all ¢ € R%\ {0}, with [£| > 1, m is defined projectively, i.e., it only depends on
the direction £/|€|. Moreover, for all £ € R%, m(€) = v in a conical neighborhood of
Re(w), and m(§) = —h in a conical neighborhood of Im(w), for |§| > 1. In addition,

Vt >0, Mg (&) —my(§) <0. (4.1)

Let us define

ag, (€) = (™),
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where (§) = /1 + [£|2. a%, is a symbol of class S;nw(é) and it satisfies the following:
for allt > 0, there exists Ry € RY, depending on t, such that
am (€)
a5, (§)

for || > Ry and a uniform constant C' > 0.

< Cef%min{v,h}t (42)

The proof of this lemma is modeled after that in [FRS08], and is deferred to
Appendix A. Before defining an anisotropic Sobolev bundle, we define an anisotropic
Sobolev space as follows

W ="(M) = (Op(am(z, €)' L*(M,w),

for some h € RT and v € R*, and we assign an anisotropic Sobolev norm to a
distribution D € W™ (M) as

| Dlv,~nw = | Op(am(xag))DHLQ(w)‘
Equivalently, we can also define W5 " (M) as
Wy (M) = {D € C™(M,w): || Op(am(, £))D| r2(ar.) < 00}
The equivalent formulation has the following advantage: since
L} (M, w) = ¢"L*(¢" (M, w)),
for all ¢ € Diff (M), this immediately shows that
W "(M) = {(D,w) € C7(M,w): || Opy(am (2, €)) Dl 2(arw) < 00} /Diff* (M)
is a well-defined sub-bundle of C,;*°(M). Moreover, since
L*(gr(M,w)) = L*(M,w),

this implies that the anisotropic Forni cocycle, that is, the lift of the {g;}-action

to Wy ’_h(M ), is well-defined as an unbounded operator-valued cocycle Fi(w) on
C-°°(M). Here, we use the terminology unbounded to mean not necessarily bounded.
Unbounded operators require one to restrict to the domain of definition, which mo-

tivates the following considerations.

4.1. Domain of definition. Restricted to its domain of definition, the (anisotropic)
Forni cocycle Fi(w) is the identity cocycle, in the following sense

Fi(w) : Dom(F((w)) C W:}),—h et

gtw

(w7 D) - (gtw> D)7

where
Dom(F(w)) ={D e Wo™": D e Wh"
={DeC;>®(M): De W, " and D € Wi "},

Equivalently, the Forni cocycle F;(w) is the operator-valued cocycle

Fi(w) := Op(am(z,€)) ™" Op(am(gi(z,€))) : Dom(Fy(w)) — W™, (4.1)
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where
Dom(F;(w)) = {D € W™ ": Fi(w)D € W2™"}
={DeC,;%®°M): De W2 " and Fy((w)D € Wo "}
—{D € C;%(M): Oplan(w,)) D& Oplan(gi(x, €))D € LA(M,w)}
In fact, and relying crucially on the fact that L?(M,w) = L?(g;(M,w)), we have
just proved

Lemma 4.3. The formulation in 4.1 identifies the fibers W2 and ngt’ujh, and

thus defines a measurable trivialization of the bundle W,g’*h(M) when restricted
to the orbit {guw} and, more generally, to the support of any ergodic g;-invariant
probability measure.

This lemma will be crucial for the rest of our microlocal considerations, especially
in the application of the infinite-dimensional multiplicative ergodic theorem.

Remark 4.4. We refer to Fi(w) as a cocycle since, for s,t € R, Fiys(w) =
Fs(giw)Fi(w). That is, it is a multiplicative cocycle in the sense of dynamical sys-

tems. Moreover, the cocycle Fy(w) maps each D € Dom(F;(w)) to Fy(w)D € W™,

Remark 4.5. It can be shown by standard arguments that (Dom(F;(w)), || ||Dom,g.w)
—h .

and (W2 ™, |-, e) are Hilbert spaces, where |-l pomgre = [lo.—as- 1l gre

Moreover, Dom(F;(w)) is a densely defined subspace of (W5 ™", || - llo,—hw), and ex-

tends to a bounded operator from W5 ™" to itself.

4.2. Quasi-compactness of the Forni cocycle. Restricted to its domain of defi-
nition, the Forni cocycle is a bounded operator-valued-cocycle from W2 ™" to Weiw h
To establish our quasi-compactness estimates, where we shall appeal to the L? con-
tinuity of pseudo-differential operators of order 0, it will be useful to conjugate the
Forni cocycle to one that is a bounded operator-valued-cocycle from L?(M,w) to
L?(g:(M,w)) = L?>(M,w). First, observe that

(0D (am (a, )W = L2(M, w),
and let
F2(w) := (Op(am(x,€)) Fi(w) (Op(am(z, €)™
= Op(am © gi(, €)) Op(am(x,€)) ™"
The L? Forni cocycle is therefore the conjugated Forni cocycle, as follows:
Fi(w) : Dom(Ff2((w)) € L*(M,w) — L*(M,w)
(w, D) = (giw, F{*(w)D),
where
Dom(FH(w)) == {D € L*(M,w): FF?(w)D € L*(M,w)}
={D e C;®(M): D e L*(M,w) and FF?(w)D € L*(M,w)}.

We will now show
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Theorem 4.6. The densely-defined Forni cocycle
Fi(w) : Dom(Fy(w)) — Wo—h

forms a family in t > 0 of quasi-compact operators with respect to the || -

v,—h,w
norm. Equivalently, The densely-defined L? Forni cocycle
FE2(w) : Dom(FF2(w)) — L*(M,w)
forms a family in t > 0 of quasi-compact operators with respect to the || - || ;2 norm:
that is, it is a bounded cocycle with respect to the || - |2 norm, and can be written
as
FA(w) = #i(w) + ku(w) : Dom(F{?(w)) = L (M, w)
with

[FE2 (W)l 22 = 1Pl 2z + kel 22,

A . 1
where 7 is a compact cocycle, and ||ki||r2_r2 < Ce™ 2 min{v,h}t

0.

Proof. The proof follows that of [FRS08, Theorem 1], and we note that we do
not apply (nor need) Egorov’s lemma in our setting. By the composition theorem

for PDOs [FRSO08, Theorem 5], and for any ¢ > 0 and any w, Ff?(w) is a (vari-

(gt(2,8))—m(z,£) whose symbol is amOgt
m

modulo subleading corrections in S,T(gt(m’é))fm(x’g)f(zkl). By (3.1),
Fi?(w) € U9, while (3.2) ensures that

for some C := C, j, >

able order) pseudo-differential operator in \I’;n

we have that

lim sup FF2(w) < Ce_%min{”’h}t,

for C :==Cyp, = ez min{vh}ind - Therefore, by L? continuity for 0 order PDOs
[FRS08, Lemma 14|, we have that, for any € > 0,

FR (W) = fep(w) + kep(w),
where 7 ; is a smoothing compact cocycle, and
lhellpaypz < Cemaminteh}t 4 ¢
In fact, the proof of [FRS08, Lemma 14] shows that for any € > 0,
IFE2 @) Lomre = [Pee(@)llzem e + [Eee@)ll 2 2,

and this completes the proof, since the cocycles F{*?(w) and Fi(w) are unitarily
equivalent and || F¢(w)||yo.—n_yypo—n = [|FE2 ()| 212 O

Following [FRS08], define
W™ i= Op(am (2, €))L* (M, w),

and bserve that we can also define the dual Forni cocycle Fi(w), acting on the dual
anisotropic Sobolev space W, v’h, by

Fi(w) := Op(am(z,€)) Op(am(g(z, €)™
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Let us recall from [FRS08] that W~"" and W¥~" are dual in the following: if
¢ €W and ¢p € WP,
(@ V)wo—nsw—vn = (Op(am(z, §))d, Op(an(z, 5))71¢)L2(M,w)'

From which we can derive

(@, V)wo—nxw—on| < Dl -l ¢ lly—on
Moreover, if ¢ € W =" N L2(M,w) and ¢ € W' 0 L2(M,w),

(D, V) wo—nxw—vn = (B, ) L2(Mw)-

Let us record an invariance property of the distributional pairing under the action
of these two cocycles. Specifically, for all f € Wy, " and g € Wy_ Zf, the pairing
satisfies

{f, g>W;t’;’Lng*_”t»Q = (Ft(w)f, f—t(w)g>wﬁ,fh><w;u,h.

By duality of F_;(w) with respect to the distributional pairing(-, )y v.—nspy—ovh,
we obtain the adjoint as follow

<-Ft(w)fa j:—t(w)g>wu’ja—h><ww—“vh = <(f—t(w))*ft<w)fa g>w:j7—h><wuj“’h
5. OSELEDETS DECOMPOSITION OF THE ANISOTROPIC SOBOLEV BUNDLE

Let v be any ergodic g;-invariant probability measure, and let suppv C H(k) be
its full measure set of Birkhoff-regular points. For r-a.e. Birkhoff-regular w, let
W5 ™" be the fiber over w € suppv in W " (M). We will need the following

Lemma 5.1. The Forni cocycle Fi(w) forms a family in t > 0 of strongly mea-

surable operators on Wg’_h: that is, for any D € ij’_h, we have that w —

Fi(w)D is (Esuppv, By-mxym)-measurable, where Xy, is the o-algebra on suppv
and BS;mem is the Borel o-algebra (with respect to the strong operator topology)
on S;™M x S
Proof. For any D € Dom(F;(w)), for t > 0, we need to show that the map

supp(v) > w = Fi(w)D = Op(am(z, €)™ Op(am(g(z,€))D € (¥~ x ¥™)(D)
is (Esuppy,BSJmX gm )-measurable. We can do this in two stages. First, for each
w € supp v, the map

S5™ x ST C C°(TH(M)) x C(T*(M)) — U™ x U

is continuous with respect to the product Frechet topology on W™ x ¥/ induced
by the seminorms. On the other hand, by construction, the map

suppv 3 w — CX(T*(M)) x CX(T*(M))
is & (Fsupp v Bose (7 (a1)) x o (7+(Mr)))-measurable map from the measure space
(supp v, Zsupp )
to the measure space
(CITH(M)) x CZ(T(M)), Bege (= (ay)x oo (7+ (M) )-
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This completes the proof of the lemma. O

Typically, one studies the spectral radius of a single operator. For the Forni
cocycle, which parameterizes a family of operators, the (logarithmic) analogue of
the spectral radius is the mazimal Lyapunov exponent:

o1
M(w) = lim —log [ Fe(w) lwe.—nope.-n.
Moreover, if one assumes

log® sup (| F¢(w)llv,—nw)s logt sup (| F1-¢(g1-1w)llo,~hw) € L'(X,v).  (5.1)
tel0,1] t€[0,1]

then the Kingman sub-additive ergodic theorem, together with ergodicity of the
gi-action, implies that A\;(w) is identically a constant for v-a.e. w, and so one writes
Al

Lemma 5.2. Condition 5.1 holds.

Proof. For any fixed t € [0, 1], the operator norms || F;(w)||v,—hw and || Fi—¢(g1—tw)||v,—hw
are bounded, giving us the conclusion. (|

We will also need to define a cocycle analogue of the (logarithm) of the essential
spectral radius of a single operator. We first define

Definition 5.3. The Kuratowski measure of non-compactness of the (bounded)
cocycle Fy(w) : WS - Wo ™ is
| F(w)lie(xy = inf{r > 0: Fi(w)(B) can be covered by finitely many balls of radius r},

where B denotes the unit ball in W% with respect to the || - ||y, —p . nOrm.

The index of compactness of Fy(w) is the quantity

o1
w(w) = lim o | Fu(w) ey (5.2)

Observe that for a single operator L, ||L|[;c(x) = 0 if and only if L is compact.
Moreover, [|L||;o(x) is sub-multiplicative, which implies that by the Kingman sub-
additive ergodic theorem, k(w) is identically a constant for v-a.e. w.

We can now establish

Lemma 5.4. There exists v,h € RT for which the index of compactness r of the
Forni cocycle can be made strictly smaller than A;.

Proof. We have
1 .
1F @) lie(x) < e (@)lo,—nw < Ce™2 ™m0,
In particular, this implies that
1 T .
w(w) = lim -~ log | Fu(w) iegx) < — minfo, b}

Since \p is constant a.e. (in fact, we will prove that A; = 0), we can find v,h € R
satisfying the inequality k < A1 a.e. O
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We will also need to show that
Lemma 5.5. ij’_h has a separable dual.

Proof. First, it is clear that L2(M,w) is separable since (M,w) admits a finite,
faithful measure, namely Rew A Imw, and as a Hilbert space, it is reflexive. This
implies that W5 has a separable dual, as desired. O

The main result of this section is

Theorem 5.6. For v-a.e. w, there exists a constant r, with 1 < r < oo, and
exceptional Lyapunov exponents

AM> >N >k

with multiplicities
mi,...,mp €N,

and closed subspaces Vi(w), ..., Vi(w), Zoo(w), such that

(1) dim(Vi(w)) = m,

(2) Fe(w)(Vi(w)) = Vi(gw) and Fi(w)(Zoo(w)) C Zoo(gew)

(3) Dom(Fi(w)) = Zoo(w) @ Vi(w) & --- &V (w)

(4) for every f € Vi(w)\{0}, limy, 00 %log | Fe (W) fllo,~hw = A,

(5) Jor every f € Zoo(w), limsup,,o 1 108 |15 (w) flle s < 1

Moreover, the || - ||y —hw norms of the projections I1;(w) : Dom(F;(w)) — Vi(w)

associated to the splitting of Dom(F(w)) are tempered with respect to gi: that is,
for v-almost every w € X, we have

. 1
ngrfoo ;HHz’(Qtw)vafhawvﬁh =0.
Proof. Follows from the MET where the conditions required have already been
checked above. We should also state here that the METSs are stated in discrete
time, but as stated by A. Blumenthal and S. Punshon-Smith in [BPS23], the ex-
tension to continuous-time is standard and classical. O

Finally, our aim is to show that the conclusion of Theorem 5.6 only depends on
the value k. That is, it is independent of the choice of the order function m(z,§)
(which in turn determines v, —h and the radius of the cones around RRew and
RImw), so that all the exceptional Lyapunov exponents \; that are greater than k,
together with the corresponding subbundles V;(w), are intrinsic.

It will be convenient to substitute the notation ij’_h with W, (@8 for the rest
of this section. Moreover, the Forni cocycle also depends on the order function, and
so we also write F;"(w) to highlight this difference.

First, let O, _j, be the set of all order functions satisfying the properties listed in
Lemma 4.1. Observe that such a set is non-empty. Let m,m’ € O, _j, and assume

that m’ > m. Then we have that Wff/(m’g) C Wf,n(m’g), and that szn/(m’g) is dense in
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WZJn(x’E). Similarly, we have that W;?U:(gt(x’g)) C ngiﬁg’f(’”@), and that Wﬁ'(gt(“)) is

dense in W,)" (9:@8)  This implies the following three inequalities:

Il o 2 11l o
1 Ml greo = 11+ Nl gewos
” ) HDom(p{"’(w)) > H ’ HDom(p;n(w))-

To show that the Osceldets decomposition of Dom(F;™(w)) and Dom(F/ (w))
coincide, we appeal to the following proposition due to Gonzalez-Tokman-Quas
[GTQ21, Theorem A.1].

Proposition 5.7. Let Dom(pf*(w)) = Zoo(w) ® @)_, Vi(w) and Dom(p}" (w)) =
Z! (W) ®@I_, V/(w) be the splittings associated to Dom(py*(w)) and Dom(p}* (w)),
respectively, and let {\;}_y and {\.}7_, be the correspodning exceptional Lyapunov
exponents. Then, if max(\;, \;) > a := max(k, k'), then

o \. =\, and

o forv-a.e. w, Vi(w)="V/(w)

Together with g;-invariance of the Vj(w)’s, together with the flexibility of the
choice of the order functions (as the radius of the cone around RRew can be taken
to be arbitrarily small), we can conclude now

Corollary 5.8. For v-a.e. w, any 1 < i < r, and any f € V;(w), we have that
WEF(f) C RRew.

Corollary 5.9. For v-a.e. w, any 1 < i <r, and any f € V*(w), we have that
WE(f) C RImw.

5.1. Oseledets Expansion of the Distributional Pairing. Let us make explicit
the expansion of the dynamical distributional pairing arising from the Forni cocycle
Fi(w) and its dual F_;(w), acting on the anisotropic Sobolev bundle and its dual,

respectively. We recall the pairing between f € W2 ™" and ¢ € W, ", defined as
<f7 g>w:j”_h><w‘;“’h = <Op(am(1"7 5))]0’ Op(am(xv 5))719>L2(M,w)'

Let {Vi(w)}1<i<r denote the Oseledets decomposition of the anisotropic Sobolev
bundle W", and {de(w)}lgjg the corresponding dual decomposition of the dual

bundle W, ”’h, arising from the dual cocycle F;(w). The cocycles act as follows:
Fi(w) : Vilw) = Vilgw),  Foa(w) : Vi(w) = Vi(g-w).

We can write
k
W oW, "= P (VieV}) & (Ze 0 V) @ (Vi® Z5) @ (Zeo ® Z3) (5.1)
ij=1
Let II;(w) denote the projection onto the Oseledets space V;(w), and similarly let
H;l(w) denote the projection onto the dual space de(w). We can obtain the following
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asymptotic expansion:

T
F Ai+Ad
(Ful) f. For@)g) gy = 3 eI ML 00) £, T w)g) oy en+RelF 9),
ij=1
where \; and )\;l are the Lyapunov exponents corresponding to the spaces V;(w) and
de(w), respectively. The remainder term Ry(f,g) arises from the components of
the cocycle acting on the subspaces not associated with the exceptional Lyapunov
spectrum. These include all tensor products involving at least one of Z(w) or

Zoo(w).
6. SIMPLICITY OF THE ZERO EXPONENT

The purpose of this section is to prove that the 0 Lyapunov exponent is simple.
That is, the dimension of the corresponding Osceledets subbundle is equal to 1. We
begin with the following

Lemma 6.1. 0 is a Lyapunov exponent and all functions in Dom(F;) N L*(M,w)
belong to the corresponding Osceledets subbundle.

Proof. Recall that, since Op(a, o g;) can be chosen to be self-adjoint and invertible
up to sub-leading terms by [FRS08, Corollary 4], we have that

HFt(W)f”v,—h,gtw = HfHL2(M,w)

for all f € Dom(F;(w))NL%(M,w). We note the the constants cannot belong to Vs,

(corresponding to the essential spectrum of the Forni cocycle) since distributions
in Dom(]:"t(w)) belonging to Vo, can only be exponentially contracting w.r.t the
|| - |v,—h,g. nOrm by an exponential rate that is at most %{vh}

Since the constants belong to L?(M,w), we see that 0 is then a Lyapunov ex-
ponent of our Forni cocycle and the corresponding Osceledets bundle is at least

1-dimensional.

O
One also needs to rule out sublinear growth:

Lemma 6.2. Let f € Dom(F;) N L*(M,w). Then log || Fi(w)fllz2 cannot grow
sublinearly.

Proof. Suppose, for the sake of contradiction, that log ||F;(w)f|lz2 = o(t), so that
1log || Fu(w)fllpz — 0 as t — oo. This is clearly impossible since ||Fy(w)f]lz2 =
[fll2 and [|f]l2 < oc. O

The main result of this section is
Proposition 6.3. . Let f € Dom(F;). If Fi(w)f = At)f, with |A(t)| = 1, then
feC®(M). In other terms, we will show that for f € Dom(F), if
Op(am o gt)f = A(t)Op(am) [,
with |\(t)| = 1, then f € C°(M).
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Before proving Proposition 6.3, let us show the following corollary, based on
[FRS08, Lemma 3]:

Corollary 6.4. If f satisfies the assumptions of Theorem 6.3, then f is identically
a constant, and therefore the zero Lyapunov exponent is simple.

Proof. First, by compactness of M, we have |Fi(w)f|re~ = |f|ree < co. We remark
that the action of the cocycle extends to vector fields and Lie derivatives: it scales the
vector fields X = (dz)* and Y = (dy)* by e~ or €, respectively. Then, we observe
that |Fy(w)Ly f| = |Lety f| = €!|Ly f| for all t € R. Since, for f € C1(M), we have
|Fe(w)Ly f| = |Ly f| < oo, this implies €| Ly fdz| — oo as t — oo unless |Ly f| = 0,
which in turn implies that Ly f = 0. Similarly, we observe that |F:(w)Lx f| =
|Le—tx f| = e tLx| for all t € R. Since, for f € C'(M), we have |F;(w)Lxf| =
|Lx f| < oo, this implies e !|Lx f| — oo as t — —oo unless |Lx f| = 0, which in
turn implies that Lx f = 0. Since M is connected, this implies that f is identically
a constant. O

We are now ready to prove Theorem 6.3, based on an adapation of [FRS08,
Lemma 4] to our setting:
Proof of Proposition 6.3. We will use an h-semiclassical quantization given by
1 (z—y)
Opya(e. )u(r) = i [ 7 ala, uty)dade (61)
First, there exist a partition of unity in S° with symbols

0 < B(z,§),C(x,€) € S°,

such that
1=B*+C? (6.2)
and B(z,£) =1 on the set
Ry < |&f* < R3,(1 - 0)(1 +1&,) (6.3)
with support in
B3y < [&[* < R3,(146)(1+ &), (6.4)

where & > 0 is small enough.
Moreover, (B o g¢) is equal to 1 on a set

R} < |&* < a(t)RY(1+ |&[?) (6.5)
and has its support in a set
R} < |&* < b(t)RF(1+ 16, [%), (6.6)

where 1 < a(t) < b(t) are independent of § for § > 0 small enough.
It follows that we can write

afn = (Bam)2 + (Cam)z, (6.7)
and B(z,£)anm, = a,, on the set

&? < (1=6)(1+1&)) (6.8)
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with support in
[ < (L+8)(1+ |€), (6.9)
where 0 > 0 is small enough.
Moreover, (Bay,) o g; is equal to a,, o g, on a set

[&al* < at)(1+ &)%) (6.10)
and has its support in a set
o l” < b(E)(L+ 1€y ), (6.11)

where 1 < a(t) < b(t) are independent of § for § > 0 small enough.
Now we can construct corresponding h-pseudodifferential operators such that

Opy(am)? = Opy(Bam)? + Opy(Cam)* + K, (6.12)
where K is negligible in the sense that
K=0h"):H N - HY VN €N, (6.13)

and such that the symbol of Op;,(Bay,) is equal to Ba,, modulo hS™ !, and modulo
h> S5~ it is equal to a,, on the set 6.8 and has its support in the set 6.9.
It follows that
Opy (am © g¢)* = Opy,(Bam 0 g1)* + Opy(Cam 0 1) + K,

and such that the symbol of Op,,(Bay,) o g; is equal to Ba,, modulo hS™ ! and
modulo h*° 57 it is equal to a,, on the set 6.10 and has its support in the set 6.11.
Taking the difference, we can find a self-adjoint PDO D such that:

Opy(am © g:)* — Opy(am)* = Opy,(Bam © ¢:)* — Opy(Ban)® + D* + L (6.14)
In fact, we choose the symbol D of D = Opy,(D(z,€)) so that Opy,(D(z, €))? is equal
to zero in the region where B = 1, and such that Op,(D(z,¢))? is equal to

(1~ [Op4(am)* — Opy(Bam)?] + [Opy(am © g:)* — Oy ((Bam) © g:)°])
in the support of B where B is not identically equal to 1, and finally, Op,(D(z, ¢))?
equals
Opy,(am © ) — Opy((Bam) © g:)

outside the support of B. In fact, by construction, we have that Dis semi-classically
elliptic in the region

(L +8)(L+ 161" < |6l < a() (1 +1&).

for [&z| > Ry.
Now, let f € Dom(F;(w)) be such that

Opp,(am o gt) f = A(t) Opy,(am) f-

Observe that since Opy,((Bam) o g¢)f, Op,(Bam)f also belong to L*(M,w), it
follows by gs-invariance that

10py ((Bam) © g¢) fll L2 = || Opp(Bam)) f|| 2.
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Observe that

((Opp(am © g1)* — Opy(am)?) f. f)
= || Opp(am o ge) fII* — | Opp(am) f* = 0. (6.15)

Similarly, we have

((Opy((Bam) © g:)* = Opy(Bam)*) f, f)

= || Op((Bam) 0 g:) 11> = || Op4(Bam) f|I* =0 (6.16)
implying therefore that 6.14 reduces to

DI = —(Lf, f).
Since L is negligible, we have
IDfI? = O(h™). (6.17)
Since D is semi-classically elliptic in the region
(1+0)A+1&1%) < &l < at)(1 + &%),

we see that, by microlocal elliptic regularity (express this using wavefront sets), f
is microlocally O(h°) in the region (replacing & — h§)

1 1

(1+8)(3 + 1) < Il < a5 + 6/2),

and letting h — 0, we see that f has no wave-front set in a conical neighborhood
of dx (for f that is smooth everywhere except along the horizontal direction, which
is a property satisfied by all distributions belonging to Osceledets subbundles, see
Lemma (to be written)). Since we already know that WF(f) C RRew, we conclude
that f € C*°. O

One still needs to ensure out that
Proposition 6.5. 0 is the largest Lyapunov exponent.
Proof. Suppose f,g € C*°(M). It follows by the compactness of M that

(Fe(w) f. Fot(w)ghwongw—on = (f,9) 12 < [[fllscllglloc < 00 (6.18)
This implies that that
S 0g{F (), F-s()g) oo <0
as t — 0o. Since C>°(M) is dense in W% (M) and W~?"(M), and the pairing
(f,9) € WP @ Wt o (Fy(w)f, Fot(@)g)wohaw o

is continuous, this implies that the same bound is true for all (f, g) € Wo~h@W —v"
and thus 0 is the largest Lyapunov exponent.
O
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7. A SOBOLEV TRACE THEOREM

In the sequel, we follow closely the exposition in Forni (see, for e.g., Lemma 2.3
in [?]). For any Abelian differential w € H(k), let 6(w) denote the length of the
shortest saddle connection on the translation surface (M,w), and let R, be the flat
metric induced by the Abelian differential w. We will now prove

Lemma 7.1 (Sobolev trace theorem). For any stratum H (k) and any h,v > 1/2
there exists a constant Cy ., > 0 such that the following holds. For any Abelian
differential w € H(k), any horizontal or vertical reqular geodesic segment v C M of
finite Ry-length Ly (7) defines by integration a current of degree 1 (and dimension

1) v € QW5 ""(M) such that

Ly(v)
|’Y|QIWJU,’L(M) < Cn,h,v(l + 5(&)) )

Proof. We adapt Forni’s proof closely, with some modifications that take into ac-
count our anisotropic Sobolev trace theorem for rectangles, proven in the appendix.
Exactly as in Forni’s proof, and up to notational modifications, the regular (hori-
zontal) arc + can be decomposed as a union v = UY v; of consecutive (horizontal)
sub-arcs such that the following properties hold:

(1) the length L,(v;) of the arcs ~;, with respect to the flat metric R, induced
by the Abelian differential w, satisfy the bounds

d(w)/3 < Ly(vi) <26(w)/3, forallie{l,...,.N—1},
Liy(0) , L (yn) < 20(w)/3;
(2) the rectangle R; = [0, Ly, (7;)] % (—d(w)/3,5(w)/3) C R? embeds isometrically
in the flat surface (M \ X, R,,), so that the arc 4; := [0, Ly, (y;)] x {0} has
image equal to v; C M, for all i € {0,...,N}.
Proceeding as in Forni, we now derive the statement from the anisotropic Sobolev
trace theorem (in R?) applied to each arc 4; C R; C R2, for i € {0,...,N}. Let
Rop:={(r,y) eR*|0<z<a, -b<y<b}.

We first analyze the case R; ;. Note that Theorems A.2 and A.5 ensure that there
exists a continuous map

70 : Wv’ih(RLl) — W*"((O, 1)),
for some index o > h + 1 satisfying

oS lwe(o,1)) < Clfllwe-n(r, 1),
for all f € W "(R; 1) and some uniform constant C' > 0. The existence of this
continuous operator implies that its adjoint operator 75 : W((0,1)) — WY~ "(R; 1)
is also bounded, where the reference measure is the Lebesgue measure on the trans-
lation surface. We will now bound the integral

/01 f(z,0)dx.
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for f € ij’_h(RLl). This integral can be rewritten as follows:

1
(L0 f ) wesmw—e = /O F(,0) d = (75 (1), Fypornap—on

where the last equality follows by duality. We now derive the bound

/Olf({L‘,O)dl'

= |<7—(3k(1)a f>Wv’h®W”vh| < HT(;K(l)HWJ“vh(RLl) Hfuwif»*h(Rlyl)

with
75 Wy, ) < Cltlwg oy = €

and hence we can write

’/01 f(@,0) dz

Exactly as in Forni, we can now derive the following bound: for every h,v > 1/2
there exists a constant Kj, , > 0,

‘ /oaf(:c,o)dx ‘s Kno (%)1/2 max{a, b, 11" | fllyyw-n g, ) o

for any s > max{h,v}.

Hence, by taking into account that the systole function is uniformly bounded
above on each stratum [?, Corollary 5.6], we conclude that there exists a constant
Ci,hw > 0 such that

= sup (v, fdz)| < Cxpp, forallie{0,...,N}.
fews "
11y 0. -n <1

< C”f”wjj’*h(RLl)'

‘Vilﬂlwgvvh(M)

The estimate in the statement then follows by taking into account the inequality
N —1 < 3L,(7)/d(w), which is an immediate consequence of the above lower bounds
on the lengths of the sub-arcs ~; for i € {1,..., N — 1}. O

8. QUANTITATIVE UNIQUE ERGODICITY

The purpose of this section is to prove the main theorem of our paper, which we
recall here:

Theorem 8.1. Assume that the forward Teichmiiller orbit gg+ (M, w) visits a com-
pact set K C H, with positive frequency, that is,

fi = ltir_>n+inf Leb({t > 0|g_+(M,w) € K}) > 0.

Then there exist constants C(M,w) > 0 and o > 0 such that, for h,v sufficiently
large, for all distributions f € W= (M) of zero average and for all (p,T) € M xR™,
such that p has an infinite forward orbit under qﬁﬁ, we have

17 u
7 | 1068 @hit] < COL lpnsan T
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First, some preliminaries. Let €. be the vector space of tempered differential
1-forms on (M,w), and let D/, (M) be its dual. Let

QWL (M) == Wy (M) ® (M) C Dj,(M)

denote the space of tempered anisotropic currents on M with distributional coefl-
cients in W2 ", We endow these anisotropic 1l-currents in QlWﬁ’_h(M ) with the
following anisotropic norm: for every anisotropic 1-form a € ij’fh(M ) @ QL(M),

/
— 2 2
|04|Q1W£,7h(M) = (Hlxoa|\|W5,,h(M) + ”ZYOAHWLJ**’L(M))

Analogous to the construction of the bundle of anisotropic distributions over a con-
nected component of the stratum H,, the above considerations give rise to the
(sub)bundles QL, D’ (M), and QW "(M), together with a Forni cocycle acting
on these (sub)bundles of anisotropic 1-currents.

As a consequence of the spectral gap of the Forni coycle acting on on the subbundle
W,g’_h(M ) of anisotropic distributions, i.e. the simplicity of the top Lyapunov
exponent, we can also derive a spectral gap result for its action on the subbundle
QWY "(M) of anisotropic 1-currents. We have

Lemma 8.2. The adjoint (Fg—(w))* of the dual Forni cocycle Fr—(w) acting on

QlW,g’_h(M) has a spectral gap, in the following sense: if the forward Teichmailler
orbit gp+ (M,w) wvisits a compact set K C H, with positive frequency, in the sense
that

fix = ltiglJrinf Leb({t > 0|g:(M,w) € K}) >0, (8.1)

then, there exist constants C' > 0 and o > 0 such that, for all v € QlW,g’_h(M),
such that (y, Re(w)) = (7, Im(w)) =0, and for all t > 0,

‘(ﬁ—t(w))*}—t(w)(’y)‘Qlwg’*h(M) < Ce(l_a)t"Ft(w)(’y)‘Q1W:;’7h(M) ’

Proof of Theorem 8.1. We write ergodic integrals of the horizontal translation flow
in terms of the anisotropic 1-currents X (p) € QLW ’_h(M ), arising from the ergodic
integral

/ f o dX ()t = (v (1), FRe(w)). (8.2)

We consider a sequence (t,,) of return times of the forward Teichmiiller orbit gr+ to
K with positive frequency, that is, such that

tn
im0 &9
Since ¢4, (M, h) € K, there exists a constant Cx > 0, such that
1

— < T,(pe " <C
CK () >~ VK,
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and we study the ergodic integral at times 7T,,:

T
e ¢ (p)dt = (77, (p), fRe(w)). (8.4)

We renormalize the trajectory using the action of the Teichmiiller flow g;,, which
expands Rew by e, so that the horizontal vector field transforms as

Xg,w=re "X,
Consequently, we have the change-of-variable identity:

MW" 393 (p) = vi"f,?;n (p) € MWo L,
where the right-hand side is the current obtained by flowing along the rescaled vector
field Xy, ., for time e~*T), on the surface (M, , g¢,w).
We also note that, by definition of the extension of the Forni cocycle to the space
of anisotropic 1-currents, we have

Xgppw

e, Pl guwasr iy = 1(Foin (@) Fi, (@) (37 (@) g yyrw 1
so we can derive, by Lemma 8.1,

(Pt (@) Fi (@) (7, () gr e < Cre = Fy (@) O, () g ypre— )

On the other hand, by the anisotropic Sobolev trace theorem, we have

e 'T,
’ftn(W)Wi)i(p))‘glwﬁ”h(l\/f) = O <1 * 5(gtnw)> 7

where (g, w) denotes the length of the shortest saddle connection on (M, , g, w).
Combining these estimates, we obtain

—t
X 1—a)tn € Tn
[ F (@) (Ve tn s, (P)) [ o < C1Coe ™ (1 " 5(9tnw)> '

Since the length of the shortest saddle connection (g, w) is uniformly bounded

from below by a constant that depends on our compact set K, there exists a constant
Cy > 0 such that

Tn
| fo o3 (p)ds

By a standard decomposition argument (a generalization of the so-called Ostrowski
expansion of an irrational number, see [For02]), by the condition in formula (?7),
it is then possible to extend the estimate (8.5) on ergodic integrals to arbitrary
times. O

< CaT3 |y (55)

8.1. Smooth Solutions of the Cohomological Equation.

Remark 8.3. As with the horizontal flow, this will necessitate that the vertical flow
be uniquely ergodic, and that the backward and forward vertical flow be defined
for all T'. Indeed, the set of w whose horizontal and vertical foliations are uniquely
ergodic is of full measure with respect to any ergodic g;-invariant probability measure
in the stratum. These considerations will be revisited in Section 9.
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APPENDIX A. AN ADAPTED ORDER FUNCTION

In this appendix, we give a proof of Lemma 4.14, which introduces our order
function. We recall its content for the convenience of the reader.

Lemma A.1. Let v € RT and h € RT. There exists an order function m,, € SY C
CP(T*M), with values in the interval [—h,v|, that fulfills the following properties.
For all € € R%2\ {0}, with [¢| > 1, m is defined projectively, i.e., it only depends on
the direction £/|€|. Moreover, for all € € R%, m(€) = v in a conical neighborhood of
Re(w), and m(§) = —h in a conical neighborhood of Im(w), for || > 1. In addition,

Yt > 0, Mg (€) — mw(€) < 0. (A1)

Let us define

ag (&) = (&)™ ©),

where (€) = /1 + |£]2. a%, is a symbol of class S;n“(f) and it satisfies the following:
for all t > 0, there exists Ry € R, depending on t, such that

) i
T < Cemamin{ohlt A2
@ (©) (A2

for |&| > Ry and a uniform constant C' > 0.

Proof. Let z € C and let {dz,dy} be the basis of the cotangent bundle T;C. We
construct a function m(z,§) which is independent of the point z € C, but only
depends on ¢ € T;C. Since we require m(z,§) = m(§) to be defined projectively for
|€] > 1, we can just assign values to m on S1 = {¢ € TYC=C: [¢| = 1}, and then
define m(z, &) = m(z,&/|€|) for €] > 1.

Let V,, resp. V, be the restriction to S; of a conical neighborhood of dy,
resp. dx, such that V, NV, = @. We firstly introduce the following function
m, € (S, [~h,v]) such that m, = v in V,, m, = —h in V}, and m, is de-
creasing along the arcs connecting V,, to V},. Let T' > 0 to be fixed later in the proof
such that W, := S\ g_r(V4) C V, and W}, := S\ gr(V,) C V. With a slight
abuse of notation we use the same symbol to denote the g; action on 7;C = C and
the restriction to S!. In the latter case, every covector is rescaled by his norm. We
define the following function of S*

1 T
m(©) = g7 [ mooa(ds

For ¢ € S, we introduce the excursion time
(&) :=max{t eR: g;£ € S*\ (V,UV})} —min{t € R: g£ € S'\ (V, UV})}

and let 7 = max{7(£) : £ € S'} < co. Notice that 7 is independent of T. We have
the following inequalities:



UNIQUE ERGODICITY AND DEVIATION 25

(1) If ¢ € ST\ (W, UW}), then, denoting by G the generator of g;

Gm(E) = 57 (mo © gr(€) —mo 0 g7 (6)) =
1 1.
:ﬁ(_h —v) < —3 min{v,h} <0,

assuming 7T large enough.
(2) If ¢ e W, and 7 < T, then

1 T—1 T
m(i) =57 / moogs(g) ds + moogs(g) ds | >
X'\ Jor ~~—— T
=V 2_
>(2T—T)v _Th S
2T 2T 2’

for T' large enough.
(3) If £ € Wy, and 7 < T, then

1 ~T+r T
m(§) =5 / moogs(é)ds+/ me o gs(€)ds | <

2T =T —T4T
<v =—h
v _@T=-nh __h
2T 2T 2’

for T' large enough.

We remark that, by construction, there exist conical neighborhoods Wy C W, C V,,
and W,, C W), C V}, such that m]W = v and m|y; = —h. Finally, we extend m to
a smooth function on T5C such that m(§) = 0 for ]f\ < 1/2 and m(&) = m(&/|¢]) for
|€] > 1. By construction, m|g, is nonincreasing along the orbits of g;. Without loss of
generality, we can assume the same for m on T;C. Notice that m € SY C C>°(T*M)
in the sense of Definition 3.3, i.e., it is a well-defined order function that satisfies
(A.1).

Let us consider the escape function a,,. As above, we can treat a,, as function on
T*C and then lift it to a function on T*M. As a consequence of [FRS08, Lemma
6], the function a,, € C*°(T*C) is a symbol of variable order of class ng(m,ﬁ)’ for
any p € [1/2,1). We are left with the proof of (A.2).

Let us fix R; > 0 such that |gs(£)| > 1 for all s € [0, ¢], so that m is always defined
radially. We must distinguish between covectors in T#C and their rescaling to S*.
Thus, we write & := &/|¢| and Gi€ = g:&/] 9§ |. We limit ourselves to consider the
case £ € W, and §,€ € Wj,. The other cases, £ € S\ (W, UW}) and € € W}, can be
proved with a simpler version of the follovvlng argument. Let t; := max{s € [0,] :

Gi€ € W,} and ty := max{s € [t1,t] : §€ €SP\ (W, UW},)}. We can write

am Ogt(l‘,f) _ am Ogt1($7f) . am Oth(JZ,f) . am Ogt(x7£) (A 3)
am(:v,f) am(x7§) amogtl(x,f) amogtz(x7§)‘ '



26 H. AL-SAQBAN AND D. GALLI

Let us study every factor of (A.3) independently. The first factor represents the
flow of £ in W,,. Accordingly,

im0 gn(€) _ (g9 _ ((gn©\™® _ ({9.8))? _
am(©) BEE S( © ) §< © ) -

C(rrem@re g\t (Lpae g\t (aemg) s
1+ & +¢7 N & -\ g N ’

where we used (g4,&) < (€), m(g,€) < m(€), et < e‘tfy and m(§) > § from the
inequality (2) above.
To study the second factor of (A.3), we notice that the inequality (1) above gives

tg —

M0 iy (€) — m o giy (€) < — 2= minfu, h}.

Since the quotient (g¢,(£))/{gs, (§)) is uniformly bounded in the cone connecting W,
to W}, we obtain

am © gt, (T, ) < Che™ t2;t1 min{v,h}

am © gtq (ﬁ, 5)
Lastly, gs(§) € W}, for s € [to,t]. Thus,

m —h
am o gu() _ (9" _ ( (9:€) ) @ ( (9:€) > :
Gm © Gty (5) <9t2§> (9626) <gt2§> o <gt2€>
2o ¢2 —2t5¢2\ 1 & &
_ (LG ey : o (1 2e22£2\ 4 - det2g2\ 1 < Cye-t-%
1 + thé‘:% + e—2t§§ 62t§% €2t§%
where we used <gt§> > <gt2§>7 m(gtf) < m(gt2£)7 €t2§ > e_t2£ and m(gt(g)) < _%
from the inequality (3) above.
In conclusion,
am ogt(x,f) < C105C5e™ t126 ‘L min{v,h} —(t t2)2 < CS_Qmm{D h}t
am(x7§)
O

APPENDIX B. ANISOTROPIC SOBOLEV TRACE AND EXTENSION THEOREMS

The purpose of this appendix is to prove anisotropic Sobolev trace and extension
theorems in R? and for open rectangles in R?. The ideas behind their proofs are
standard, but we could not find trace and extension theorems that are well-adapted
for our anisotropic norms. The closest reference that we could find is [LS96], but
in that paper, the authors restrict to variable-order Sobolev spaces that are positive
index, which is not enough for our purposes.



UNIQUE ERGODICITY AND DEVIATION 27

B.1. Anisotropic Trace Theorem. We will begin with the following elementary
lemma:

Lemma B.1. Let h,o,v > 0, such that o > h+ 1. Assume m(&;,&,) is a smooth
function on R? such that m(&;, &) = 0 for [€] < 1/2, m(&;,&,) > 0 for1/2 < €] < 1,
and m(&,&y) = m(0) for|&| > 1, where m(0) is smooth in 6 and satisfies m(6) = —h
for8 € (—e, e)U(mr—e, m+e€), m(0) = v forf € (v/2—6,7/2+6)U(31/2—0,3m/2+0),
and —h < m(f) < v elsewhere, with the constants €,0 > 0 satisfying e + 6 < w/2.
Then the function

9En &) =1+ 71+ + 55)—771(@,51,)
belongs to L'(IR?).
Proof. We analyze the integral

1= [[ a+@rrasg ) mes i,

Using polar coordinates (&;,&,) = (rcosf,rsinf), where the area element trans-
forms as d{,d&, = r dr df, we rewrite the integral as

oo 2w
I= / / (1472 cos?0)~7 (1 + r2) "Dy qg dr.
0 0

Since (&, &y) is bounded in the compact region where |£| < 1, the integral over this
region is finite. Therefore, we focus on the asymptotic behavior as r — oo, which
determines whether g(¢;,&,) € L'(R?). The analysis is carried out separately in
three angular sectors:

e In the conical neighborhood C, near the &,-axis, where |tanf| < €, we have
m(6) = —h.

e In the conical neighborhood C, near the {,-axis, where |tan(§ — 7/2)| < 4,
we have m(0) = v.

e In the intermediate region Z, we have —h < m(0) < v.

For large r, the dominant term in the exponent controls the decay of the integrand.
The key step is reducing the integral to the radial term by analyzing the behavior
of cos? @ in each sector.

In C,, the bound | cos ] > 1/+/1 + €2 ensures that 1 + 72 cos? § satisfies

1+72cos? 0 > (1 +72)(1 — Ch?)
for some C' > 0. This allows us to estimate
(147r%cos?0)77 < (1+r3)77(1 - CH?)~°.
Expanding using the inequality (1 — C6?)~° < 14 0C6?, we obtain
(1+7r%cos?0)77 < (14137714 cChH?).

Since m(0) = —h in this region, the integral simplifies to

ch:/ /(1+r2)h—0(1+0092)rd9dr.
1 —€
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The angular integral is finite, contributing a multiplicative (universal) constant. The
condition for convergence reduces to the radial integral

/ (1+ 72~ dr,
1

which converges if h — o < —1, leading to the condition
oc—h>1.
In Cy, the bound |cosf| < 5/\/1—1—;(52 ensures that 1 + r2 cos? § satisfies
14+ 7r2cos?0 < (1+72).
Since m(f) = v, we estimate
(1+7%cos’0)™7 < (1+7%)77.

This reduces the integral to

oo prZ+ds
Ic, = / / (1+r3)"v"7rdf dr.
1 Jzos

The angular integral is finite, so the condition for convergence reduces to the radial
integral

oo
/ (1473~ rdr.
1
This integral converges if —v — o < —1, leading to the condition
o+v>1,

which is satisfied if ¢ > 1+ h, since h > 0 and v > 0.

In the intermediate region Z, where —h < m(6) < v, we interpolate between the
previous cases. The worst-case decay determines the necessary conditions, so the
same conditions h+ ¢ > 1 and ¢ + v > 1 are required.

Since all angular sectors impose the same constraints, we conclude that g(&,;,&,) €
L'(R?) if and only if h + o > 1, and this completes the proof. O

We are now ready to prove the anisotropic trace theorem in R2.
Theorem B.2. Let h,v > 1/2 and let 0 > h+ 1. Then the restriction operator
T0: WO TMR?) = W7 (R)
defined by

1S continuous.

Proof. By density, it suffices to consider f € CS°(R?). The Fourier transform in the
z-variable satisfies

]::U{TO(f)} = ‘F(f)(fzc:fy = 0)7
where F(f) is the full Fourier transform of f. The norm of 7o(f) in W;?(R) is

10 (A lwzo@ = 11 +€) 7P Fufro(f)}HL2@)-
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Substituting the expression for Fp{7o(f)},

170 (H)llwzemy = 11+ €27 PF()(Ewr O)l 2wy

Multiplying and dividing by the weight (1 + [£[?)™(&€)/2 where m(&,, €,) satisfies
the conditions from the technical lemma, we rewrite

(1+€)7PF(f) (&, 0)]
as
(1+ €)1+ [¢P)mE82 (1 4 g2y 2 F(£)(&,,0)].
Applying the Cauchy-Schwarz inequality in &,, we obtain the bound

1/2
([a+@reasiepn e ) ( [aw@rmeirmesitas)
The first integral corresponds to the integrability of

9(Ees &) = (L4 E) 77 (1 + |¢7) &5,
By Lemma B.1, g(&:, &) € LY(R?) if and only if
o>1+h,

1/2

which is our standing assumption. The second integral in the Cauchy-Schwarz step
is controlled by

L+ 6P )P dy < 1y
Since the first term is finite by Lemma B.1, integrating over &, gives
7o (NI, ey < CIF IR s
This establishes the continuity of 7g. 0

B.2. Anisotropic Extension Theorem. To prove an anisotropic extension theo-
rem, we will first need the following technical lemma,

Lemma B.3. Let ¢ € C5°(R) be a smooth cutoff function such that ¢ =1 near 0.
For any h > 1/2 and v > 1/2, there exists a constant C > 0 such that

/R (14 € 4 2yt 6((1 4 €2)12,)[2 de, < O(1 +€2)

Proof. Since ¢ is compactly supported, there exists a constant M > 0 such that
¢(n) # 0 only when

Il < M.
Introduce the change of variables
d
_ 2\1/2 _ n
n=(1+¢) 7%, sothat d§, = AT

Rewriting the integral in terms of 1, we obtain
M
I(6:) = / (14 + /(1 + )2/ ) 2
-M
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Since m(&,&y) = —h in a neighborhood of the &,-axis, we estimate

(14 €2+ (n/(1 + €2)1/2)2)ymEen/ O+ < (1 4 2)~h,
Thus,

M
I(6) < (1+€2)" / O

Since ¢ is a fixed function, the integral is a constant C' := Cy, so

I(&) < C(L+g2) 12,

Now consider the integral in the region near the {,-axis, where m(&;, &) = v. We
must ensure integrability of

/R (14621 E2)|0((1 + £2)/2¢,) 2 de,,

For large &, the term (1 + {5)” behaves like 55“. Since ¢((1 4 £2)Y/2¢,) ensures &,
is bounded up to a scale set by (1 + £2)~1/2, we change variables again:
d
_ 2\1/2 _ N
n=1+¢&)"/°€¢, sothat df, = Tree I

Rewriting the integral,
dn

= [ et/ @)l
= ; TERaE

For large 7, the term (1 + n?/(1 + £2))? behaves like n*”. Thus, the integral

M
/ ,,72’0 dn
—M

converges if and only if 2v — 1 < —1, which gives v > 1/2. O
We are now ready to state and prove the extension theorem in R?:

Theorem B.4. Let h > 1/2 and v > 1/2. Let ¢ € C(R) be a smooth cutoff
function such that ¢ = 1 near 0. Define the extension operator E: S(R) — S(R?)

by
(Bu)(z,y) = Fe Lo (@1 +€)y) Fone,u).
Then E extends continuously to a bounded operator
E: W, R) — Wy "(R?),
and satisfies 7o(Eu) = u for all u € W;M(R).
Proof. Let u € S(R) and define f = Fu. By definition,
fla,y) = Fo b, (6((1+ €)' Py) Foe ).

Applying the trace operator 7y, which corresponds to evaluating f at y = 0, we
obtain

70(f)(x) = f(,0) = F L (6(0) Frose, ).
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Since ¢(0) = 1, this simplifies to

() (@) = Fol o Foseuu = ule).

Thus, 79(Eu) = u for all u € S(R).
To verify that E extends continuously, we analyze the norm of f in W5 "(R2).
The Fourier transform of f is

Fl&er &) = $((1+E)12,)(%).
Thus, the norm of f in W5 "(R?) satisfies

1,y = [ (1 € 4+ €€ g, )P des ey,

For each fixed &, consider the integral in &,:

16 = [ (14 &+ Emeslo(1+ €2, ds,
By Lemma B.3, we have the estimate

I(&) < C(L+g2) 12,

Substituting this bound into the original norm estimate, we obtain

712 ) < € /R (1+€2)"hY2[a(e,) 2 de,.

Since u € W;(R),

This ensures that the extension operator is continuous. [l

B.3. Reduction to Rectangles. The application of Sobolev trace and extension
theorems to rectangles follows by the following standard result, adapted for our
anisotropic norms:

Theorem B.5. Let h > 1/2 and v > 1/2. Let R, = (0,a) x (—b,b) be an open
rectangle in R%2. Then there exists a linear extension operator Rap : ng’*h(R@b) —

W;”*h(RQ) such that:
||Ra’bf||W£;7h(R2) S CHf”W:j’*h(Ra’b)’

where C' > 0 is a constant independent of f € Wﬁ’_h(Ra,b).

The construction of the extension is standard, and holds more generally for all
domains satisfying the so-called finite cone property, which is satisfied by R, ;. More-
over, the extension operator R, j in our case can be made explicit: one systematically
extends f(z,y) beyond R, using smooth reflections and cutoff functions. We omit
the proof of this theorem, as well as the tedious expression of the extension operator
Rap-
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